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ACRONYMS
ADF augmented Dickey-Fuller

AR autoregressive

BFGS Broyden-Fletcher-Goldfarb-Shanno

CAPM capital asset pricing model

EM expectation maximization

ETF exchange trade fund

GARCH generalized autoregressive conditional  
 heteroskedasticity

GED generalized error distribution

MSADF Markov switching ADF

MSGARCH Markov switching GARCH

OLS ordinary least square

VIX volatility index

EXECUTIVE SUMMARY
Existing models of market herding suffer from several 
drawbacks. Measures that assume herd behaviour is 
constant over time or independent of the economy are 
not only economically unreasonable, but describe the data 
poorly. First, if returns are stationary, then a two-regime 
model is required to describe the data. Second, existing 
models of time-varying herding cannot be estimated from 
daily or weekly data, and are unable to accommodate 
factors that explain changes in this behaviour. To overcome 
these deficiencies, this paper proposes a Markov switching 
herding model. By means of time-varying transition 
probabilities, the model is able to link variations in herding 
behaviour to proxies for sentiment or the macroeconomic 
environment. The evidence for the US stock market 
reveals that during periods of high volatility, investors 
disproportionately rely on fundamentals rather than on 
market consensus.

INTRODUCTION
Herding behaviour has been the subject of considerable 
interest over the years. The issue of whether investors 
imitate each other when making investment decisions 
has been extensively investigated. The extent to which 
investors discriminate between stocks should be reflected 
in how returns deviate from overall market performance. 
If investors follow the market, then dispersion in returns 
should disappear entirely. It is widely observed, however, 
that following the market may be conditional on, for 
example, whether the overall market is rising or falling. 
More importantly, one would expect market sentiment 
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and macroeconomic and financial conditions to have 
a significant influence on the extent to which investors 
follow the market.

Existing strategies to empirically investigate herding 
behaviour suffer from several deficiencies, including the 
inability to recognize that herding can change over time 
as market conditions change. For example, some herding 
measures are assumed to be constant. This is not only 
economically unreasonable, but such a view implies 
a mis-specification. For example, this paper shows that a 
unit root in the time series for dispersion can be rejected 
in favour of an alternative, wherein there are two regimes 
with stationary returns, namely, one when market 
volatility is high and another when volatility is low. 
Moreover, existing models of herding behaviour cannot 
be estimated from daily or weekly data, or are incapable 
of accommodating factors that determine investors’ 
propensity to display herd-like behaviour.

This paper makes a start towards overcoming these 
drawbacks by proposing a Markov switching model 
of the model proposed by Chang, Cheng and Khorana 
(2000), and applying this model to data from the US 
stock market. Reliance on a Markov switching model 
is supported by the finding that two distinct states 
exist; they are found to be closely related to observed 
market phases that alternate between high- and low-
volatility market conditions. The aftermath of the  
dot.com bubble represents a highly volatile regime, as 
does the period of the 2008–2010 financial crisis. 

Time-varying transition probabilities as derived by 
Diebold, Lee and Weinbach (1994) enable us to consider 
economic and financial variables that drive changes in 
herding behavior over time. In particular, proxies for 
market sentiment were applied, such as implied volatility 
and trading volume, as well as term structure variables, 
which the literature considers to be closely linked to 
macroeconomic fundamentals. In addition, non-normal 
distributions and generalized autoregressive conditional 
heteroskedasticity (GARCH) effects were controlled for.

The remainder of the paper is organized as follows: in 
the next section, the literature on herding is reviewed; 
the classical approaches to measure herd formation are 
discussed in the third section; in the fourth section, the 
Markov switching models of herd behaviour are outlined 
and the two-regime augmented Dickey-Fuller (ADF) 
test is briefly sketched out; the fifth section discusses 
the empirical results; and the paper ends with a brief 
conclusion.

LITERATURE SURVEY
The literature, in general, defines intentional herding 
as a situation where investors imitate each other’s buy 
and sell decisions, even though this kind of trading 

strategy might be at odds with their own information 
and beliefs. By contrast, spurious herding refers to a 
“clustering” of investment decisions due to similar 
underlying information sets. Herding behaviour can 
be either rational or irrational (Devenow and Welch 
1996; Bikhchandani and Sharma 2001). Pure irrational 
herd behaviour is closely related to the theory of 
noise trading (De Long et al. 1990; De Long et al. 
1991; Jeanne and Rose 2002), which assumes that a 
group of investors act irrationally or at least base 
investment decisions on some exogenous liquidity 
concerns combined with some limits to arbitrage. 
In contrast, information-based herding rests on the 
presumption that investors face uncertainty about 
the quality of the information they are able to access. 
Although information cascades attempt to address this 
kind of behaviour (Bikhchandani, Hirshleifer and Welch 
1992; Welch 1992; Banerjee 1992; Avery and Zemsky 
1998) are the first to propose a model that is applicable 
to the case of financial markets. However, even for an 
investor who has access to superior private information, 
it might be rational to ignore this information and to 
rely on herding, for example, in the case of portfolio 
managers facing incentives to stick with a benchmark 
(Scharfstein and Stein 1990; Froot, Scharfstein and Stein 
1992; Graham 1999).

The empirical literature on herding can be subdivided 
into two branches. The first one deals with herding among 
institutional investors like fund managers. Research of this 
kind resorts to data on their trading behaviour. Work on 
this topic is mainly based upon the measure proposed by 
Lakonishok, Schleifer and Vishny (1992), who compare the 
actual share of managers’ buy and sell decisions against 
the expected values under the assumption of independent 
trading.

A second strand of research deals with herding towards 
the market, which is given by investors who base their 
investment decisions entirely on the market consensus, 
thereby ignoring their own beliefs about the risk-return 
profile of particular stocks. Christie and Huang (1995) 
are the first to address this issue empirically. They test 
the conjecture that such a trading pattern is more likely 
to arise during times of market stress as evidenced by 
unusually high volatility. However, their evidence for the 
US market cannot corroborate a significant clustering of 
returns during strong market movements.

Unlike Christie and Huang (1995), the approach put 
forward in Chang, Cheng and Khorana (2000) does not 
neglect investors’ behaviour during periods of low or 
average volatility. Their test specification aims to compare 
the actual dispersion of single stock returns around the 
market with the value implied by rational asset pricing. In 
particular, they exploit the fact that those pricing models 
imply a linear relationship between the absolute value of 
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the market return and its dispersion. Their findings support 
an increased tendency to herd in emerging markets, 
but reveal only little evidence for such a behaviour in 
developed countries.

Tan et al. (2008) investigate herding in Chinese A and B 
stocks using the approach of Chang, Cheng and Khorana 
(2000). They find evidence for herding in both the A stocks 
available for domestic investors and in the B shares that 
are dominated by foreign investors. Analyzing the Polish 
stock market, Bohl, Gebka and Goodfellow (2009) highlight 
differences in trading patterns between individual and 
institutional investors. While the former engage in 
herding, particularly during market downturns, the latter 
are unlikely to be driven by herd behaviour. An application 
to the exchange trade market (ETF) market can be found 
in Gleason, Mathur and Peterson (2004). They estimate the 
models of Christie and Huang (1995) and of Chang, Cheng 
and Khorana (2000) from New York Stock Exchange 
intraday data and find strong evidence for adverse herding 
in this market. Adverse herding refers to a situation where, 
unlike the case of herding, investors disproportionately 
discriminate strongly between individual stocks.

The papers cited above deal with herd behaviour within 
a given market, but do not take potential international 
linkages in account. Chiang and Zheng (2010), however, 
investigate the impact of the US market on herding 
formation in several stock markets around the world. They 
provide favourable evidence that both the volatility as well 
as the cross-sectional dispersion of single stock returns in 
the United States influence herding activities in the rest of 
the world. In contrast, Tan et al. (2008) are unable to find 
interactions between the herding behaviour in the Chinese 
stock markets in Shanghai and Shenzhen.

Hwang and Salmon (2004) are the first to derive a measure 
of herding that allows for time variation in herding 
behaviour. Their approach is based on the assumption of 
time-varying monthly betas. Results for the United States 
and South Korea show a tendency of herding to mitigate, 
or even become adverse, in the run-up to and during 
periods of turmoil, for example, in the Asian and Russian 
financial crises as well as the tech bubble of the early 2000s. 
In order to establish a theoretical rationale for these facts, 
Hwang and Salmon (2009) put forward a testable model 
that incorporates the effect of investor sentiment. In this 
framework, herding occurs in a situation when investors 
broadly agree about the future direction of the market, 
whereas adverse herding is likely to arise when there is a 
high probability of divergences of opinion among market 
participants.

EXISTING HERDING MODELS
Research on herding rests on the seminal work of Christie 
and Huang (1995). Their approach considers the dispersion 

of single stock returns around the market. They propose 
the following measure:
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time-varying monthly betas. Results for the US and South Korea show a tendency of

herding to mitigate, or even become adverse, in the run up to and during periods of

turmoil such as in the Asian and Russian financial crises as well as the tech bubble of

the early 2000s. In order to establish a theoretical rationale for these facts, Hwang and

Salmon (2009) put forward a testable model that incorporates the effect of investor

sentiment. In this framework, herding occurs in a situation when investors broadly

agree about the future direction of the market, whereas adverse herding is likely to

arise when divergences of opinion among market participants is high.

3 Existing Herding Models

Research on herding rests on the seminal work of Christie and Huang (1995). Their

approach considers the dispersion of single stock returns around the market. They

propose the following measure:

St =
1

N(t)

N(t)∑
i=1

|ri,t − rm,t| , (1)

where N(t) and T are the numbers of stocks available at time t and observations in

the sample, ri,t stands for the return of stock i and rm,t for the market return in period

t, respectively.1 The market, in turn, is defined as a value-weighted average of single

stock returns. Equation (1) is designed to measure the average absolute deviation of

single stock returns from the market return and, thus, provides insights into the extent

to which market participants discriminate between individual stocks. If all investors

act alike and follow the market, St must be equal to 0.

To detect herding conditional on strong market movements, Christie and Huang

(1995) regress St upon a constant and two dummy variables that control for both

extreme positive as well as negative returns measured by certain outer quantiles of the

return distribution. Although very clear-cut, this approach obviously depends heavily

on the definition of the thresholds for extreme returns. In addition, differing investor

behavior during times of low and average volatility is completely neglected.

The extension put forward by Chang et al. (2000) aims to overcome these drawbacks.

They highlight the notion that, under the assumption of rational asset pricing (i.e.,

CAPM-type pricing), equation (1), is linear and strictly monotonically increasing in the

1Actually, Christie and Huang (1995) use (1) only as a robustness check and base their main
inference upon the cross-sectional standard deviation. The advantage of the absolute deviation (1)
over the standard deviation is that the former is less sensitive to outliers.

 (1)

where N (t) and T are the numbers of stocks available at 
time t and observations in the sample, ri,t, stands for the 
return of stock i and rm,t for the market return in period 
t, respectively.11 The market, in turn, is defined as a value-
weighted average of single stock returns. Equation (1) 
is designed to measure the average absolute deviation 
of single stock returns from the market return and, 
thus, provides insights into the extent to which market 
participants discriminate between individual stocks. If all 
investors act alike and follow the market, St must be equal 
to 0.

To detect herding conditional on strong market 
movements, Christie and Huang (1995) regress St upon a 
constant and two dummy variables that control for both 
extreme positive as well as negative returns, measured by 
certain outer quantiles of the return distribution. Although 
very clear-cut, this approach obviously depends heavily 
on the definition of the thresholds for extreme returns. In 
addition, differing investor behaviour during times of low 
and average volatility is completely neglected.

The extension put forward by Chang, Cheng and Khorana 
(2000) aims to overcome these drawbacks. They highlight 
the notion that, under the assumption of rational asset 
pricing (i.e., capital asset pricing model [CAPM]-type 
pricing), equation (1), is linear and strictly monotonically 
increasing in the expected value of the absolute market 
return, E (|rm,t|). By contrast, herding behaviour is better 
captured by a function that is either non-linear or reaches 
a maximum at a certain threshold value of E (|rm,t|), 
declining thereafter. The following regression is designed 
to capture these effects:
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expected value of the absolute market return, E (|rm,t|). By contrast, herding behavior

is better captured by a function that is either non-linear or reaches a maximum at a

certain threshold value of E (|rm,t|), declining thereafter . The following regression is

designed to capture these effects:

St = γ + δ |rm,t|+ ζr2m,t + εt, (2)

where the realized market return is used to proxy their expected value. Rational asset

pricing, then, implies a significantly positive δ and a ζ equal to 0. By contrast, a value of

ζ that significantly differs from 0 indicates a violation of the linearity implied by rational

asset pricing. Using daily returns, this means that V ar(rm,t) = E(r2m,t) − E(rm,t)
2 ≈

E(r2m,t) holds, so that r2m,t can be regarded as the market return variance. If, during

periods of high volatility, investors herd towards the market, this implies that St, the

dispersion of returns around the market, becomes disproportionately low compared to

the rational pricing model. This should show up as a negative coefficient for ζ.

Within the framework of the models outlined above, herding behavior is constant

over time in spite of different market phases or business cycles. Since the literature

relates herding to investors’ sentiment (Shiller et al. (1984), Lee et al. (1991), Devenow

and Welch (1996), Hwang and Salmon (2009)), which by definition is time-varying, this

assumption does not seem reasonable. Furthermore, it is conceivable that, due to the

crisis-laden environment prevailing during the last decade including the tech bubble,

9/11, and the most recent financial crisis, the time series of dispersion, St, may not be

stationary in a single regime setting but might be better characterized by a two state

model allowing for different dynamics in tranquil and volatile periods.

To account for time-varying effects, Hwang and Salmon (2004) propose the following

state space model which, while similar in spirit, does not directly make use of the

dispersion measure (1). First of all, they assume that market betas are changing over

time. Inference about herding can then be obtained from the cross-sectional standard

deviation of the betas. For instance, a situation where the betas of all stocks in the

market are approaching the value 1 implies that this cross-sectional standard deviation

gets close to 0. In contrast, when all investors disproportionately strongly differentiate

between stocks such that the betas more strongly diverge from 1 than is implied by

the CAPM equilibrium condition, referred to as adverse herding, this would end up in

a higher standard deviation.

To account for the foregoing considerations, Hwang and Salmon (2004), as a first

step, estimate standard OLS betas on a monthly basis. In a second step, the cross-

sectional standard deviation of these betas is calculated for all periods. The deviations

 (2)

where the realized market return is used to proxy their 
expected value. Rational asset pricing, then, implies a 
significantly positive δ and a ζ equal to 0. By contrast, a 
value of ζ that significantly differs from 0 indicates a 
violation of the linearity implied by rational asset pricing. 
Using daily returns, this means that Var(rm,t) = E(rm,t) − 
E(rm,t)2 ≈ E(rm,t) holds, so that rm,t can be regarded as the 
market return variance. If, during periods of high volatility, 
investors herd towards the market, this implies that St, 

1 Actually, Christie and Huang (1995) use (1) only as a robustness 
check and base their main inference upon the cross-sectional standard 
deviation. The advantage of the absolute deviation (1) over the standard 
deviation is that the former is less sensitive to outliers.
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the dispersion of returns around the market, becomes 
disproportionately low compared to the rational pricing 
model. This should show up as a negative coefficient for ζ.

Within the framework of the models outlined above, 
herding behaviour is constant over time in spite of 
different market phases or business cycles. Since the 
literature relates herding to investors’ sentiment (Shiller, 
Fisher and Friedman 1984; Lee, Shleifer and Thaler 1991; 
Devenow and Welch 1996; Hwang and Salmon 2009), 
which by definition is time-varying, this assumption does 
not seem reasonable. Furthermore, it is conceivable that, 
due to the crisis-laden environment prevailing during the 
last decade, including the tech bubble, 9/11 and the most 
recent financial crisis, the time series of dispersion, St, may 
not be stationary in a single regime setting, but might be 
better characterized by a two-state model allowing for 
different dynamics in tranquil and volatile periods.

To account for time-varying effects, Hwang and Salmon 
(2004) propose the following state space model, which, 
while similar in spirit, does not directly make use of the 
dispersion measure (1). First of all, the model assumes 
that market betas are changing over time. Inference about 
herding can then be obtained from the cross-sectional 
standard deviation of the betas. For instance, a situation 
where the betas of all stocks in the market are approaching 
the value 1 implies that this cross-sectional standard 
deviation gets close to 0. In contrast, when all investors 
disproportionately strongly differentiate between stocks, 
such that the betas more strongly diverge from 1 than is 
implied by the CAPM equilibrium condition, referred to 
as adverse herding, this would result in a higher standard 
deviation.

To account for the foregoing considerations, Hwang and 
Salmon (2004), as a first step, estimate standard ordinary 
least square (OLS) betas on a monthly basis. In a second 
step, the cross-sectional standard deviation of these betas 
is calculated for all periods. The deviation is then modelled 
within a state space framework where the changes in the 
dispersion of the betas are governed by a latent herding 
variable. Assuming an autoregressive [AR](1) process 
describes its movements, the latter can be extracted by 
using the Kalman filter.

Although the above approach produces a continuously 
evolving herding variable, it suffers from several 
drawbacks. First, the model cannot be estimated from 
daily or weekly data, but relies on monthly beta estimates. 
Monthly betas, however, are strongly driven by “noise,” 
for example during periods of substantial financial 
turmoil, such as in the case of the recent financial crisis. 
Reducing noise requires expanding the estimation period 
for the market betas, which in turn, reduces the number 
of observations for the state space model. Furthermore, if 
herding dynamics actually take place in the very short run, 
say on a daily or weekly basis, the model cannot capture 

the sought after phenomenon. Second, the model is unable 
to link changes in herding to proxies for investor sentiment 
or macroeconomic fundamentals. Third, assuming a 
0 mean for the latent herding variable, the model, by 
definition, implies swings between herding and so-called 
adverse herding. Thus, this measure is unable to describe a 
market where investors are switching between herding, no 
herding or adverse herding forms of behaviour. In contrast, 
the Markov switching version of the herding measure (2) 
proposed in this paper aims to remedy these problems. 

METHODOLOGY

MARKOV SWITCHING HERDING 
MEASURES

The authors’ principal aim is to model time-varying herd 
behaviour based on daily data and, additionally, to allow 
variations in herding to be driven by exogenous variables. 
A straightforward way of introducing time-varying 
behaviour is to assume that it is subject to regime switches. 
Hence, equation (2) is modified to allow for switching 
between two regimes j ϵ {1, 2}:
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is then modeled within a state space framework where the changes in the dispersion

of the betas are governed by a latent herding variable. Assuming an AR(1) process

describes its movements, the latter can be extracted by using the Kalman filter.

Although the above approach produces a continuously evolving herding variable,

it suffers from several drawbacks. First, the model cannot be estimated from daily

or weekly data but relies on monthly beta estimates. Monthly betas, however, are

strongly driven by noise, such as, during periods of substantial financial turmoils, as in

the case of the recent financial crisis. If one wishes to reduce noise, this requires us to

expand the estimation period for the market betas which, in turn, reduces the number

of observations for the state space model. Furthermore, if herding dynamics actually

take place in the very short run, say on a daily or weekly basis, the model cannot

capture the sought after phenomenon. Second, the model is unable to link changes

in herding to proxies for investor sentiment or macroeconomic fundamentals. Third,

assuming a 0 mean for the latent herding variable, the model, by definition, implies

swings between herding and so-called adverse herding. Thus, this measure is unable

to describe a market where investors are switching between herding, no herding, or

adverse herding forms of behavior. In contrast, the Markov switching versions of the

herding measure (2) proposed in this paper aims to remedy these problems. We next

turn to its description.

4 Methodology

4.1 Markov Switching Herding Measures

Our principal aim is to model time-varying herd behavior based on daily data and,

additionally, to allow variations in herding to be driven by exogenous variables. A

straightforward way of introducing time-varying behavior is to assume that it is subject

to regime switches. Hence, we modify equation (2) to allow for switching between 2

regimes j ∈ {1, 2} :

St = γj + δj |rm,t|+ ζjr
2
m,t + εj,t, (3)

where εj,t∼N(0, σ2
j ) and the other variables were previously defined. It is well known

that financial time series often display leptokurtosis. Therefore, we reestimate the

model given in equation (3) allowing one or even both regimes to be governed by a

fat-tailed distribution. To this end, we rely on the t as well as on the Generalized Error

 (3)

where ϵj,t~N (0, σj ) and the other variables were previously 
defined. It is well known that financial time series often 
display leptokurtosis. Therefore, the model given in 
equation (3) is re-estimated allowing one or even both 
regimes to be governed by a fat-tailed distribution. To 
this end, the t is relied on as well as on the generalized 
error distribution (GED).2 We assume the latent state 
variable to be driven by a first-order Markov process, with 
transition probabilities, pij,t = Pr (St = j|St−1 = i), i, j ϵ {1, 2}, 
which can either be constant or time-varying. For the sake 
of inferring the regime the process is in at time t, based 
on all information available up to the end of the sample 
period, ΓT, smoothed probabilities pi,t|T = Pr(St = i|ΓT) we  
recalculated as given in Kim (1994).

As stated previously, time-varying transition probabilities 
can provide insights into the factors driving changes in 
herding behaviour over time. This means making p11,t 
and p22,t dependent on a set of exogenous variables Xt−1 
including a constant.3 Variables suitable in explaining the 
switches in investors’ herding behaviour include investor 
sentiment and macroeconomic conditions relying on data 
available at the daily frequency. Implied volatility, here 

2 The GED may provide further insights into the distributional 
properties of the dispersion of single stock returns since, unlike the t 
distribution, it also allows for thinner tails than in the case of the normal 
distribution.

3 These variables are lagged because the transition probabilities 
governing switches from t − 1 to t must be determined in t − 1.

2  
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measured using the Chicago Board Options Exchange 
Market Volatility Index (VIX), is used. Motivated by the 
branch of literature on sentiment (Jones 2002; Baker and 
Stein 2004; Baker and Wurgler 2006), the share turnover 
relative to market capitalization is also used.

Proxies for macroeconomic conditions can be derived 
from term structure data (Estrella and Hardouvelis 1991; 
Estrella and Mishkin 1997; Estrella and Mishkin 1998). 
Litterman and Scheinkman (1988) and Knez, Litterman 
and Scheinkman (1994) show that the variation in money 
as well as capital markets can be very well described by 
models that contain from one to four common factors. 
Based on zero bond returns, principal components 
analysis is used to extract common factors. Only those 
principal components with eigenvalues greater than 1 
are included in Xt−1. This ensures that each factor has 
more explanatory power than any return series. If the 
coefficients are assembled in a vector θ , the transition 
probability associated with state j, pjj,t can be modelled as:

7

Distribution (GED).2

We assume the latent state variable to be driven by a first-order Markov process,

with transition probabilities, pij,t = Pr (St = j|St−1 = i), i, j ∈ {1, 2} which can either

be constant or time-varying. For the sake of inferring the regime the process is in at

time t, based on all information available up to the end of the sample period, ΓT , we

calculate smoothed probabilities pi,t|T = Pr (St = i|ΓT ) as given in Kim (1994).

As stated previously, time-varying transition probabilities can provide us with in-

sights into the factors driving changes in herding behavior through time. This means

that we make p11,t and p22,t dependent on a set of exogenous variables Xt−1 including a
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Options Exchange Market Volatility Index (VIX). Motivated by the branch of litera-

ture on sentiment (Jones (2002), Baker and Stein (2004), Baker and Wurgler (2006)),

we also use the share turnover relative to market capitalization.

Proxies for macroeconomic conditions can be derived from term structure data

(Estrella and Hardouvelis (1991), Estrella and Mishkin (1997) Estrella and Mishkin

(1998)). Litterman and Scheinkman (1988) and Knez et al. (1994) show that the vari-

ation in money as well as capital markets can be very well described by models that

contain from 1 up to 4 common factors. Based on zero bond returns, we use princi-

pal components analysis to extract common factors. We only include in Xt−1 those

principal components with eigenvalues greater than 1. This ensures that each factor

has more explanatory power than any return series. If we assemble the coefficients in

a vector θj, the transition probability associated with state j, pjj,t can be modeled as:

pjj,t =
eX

′
t−1θj

1 + eX
′
t−1θj

. (4)

Turning to the estimation procedures, the models which assume a normal distribu-

tion can be estimated using the Expectation Maximization (EM) algorithm (Dempster

et al. (1977)) with closed form solutions for all parameters put forward by Hamilton

(1990) where the solutions for θj , the parameters for (4) are derived in Diebold et al.

2The GED may provide us with further insights into the distributional properties of the dispersion
of single stock returns since, unlike the t distribution, it also allows for thiner tails than in the case
of the normal distribution.

3These variables are lagged because the transition probabilities governing switches from t− 1 to t
must be determined in t− 1.
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Turning to the estimation procedures, the models that 
assume a normal distribution can be estimated using the 
expectation maximization (EM) algorithm (Dempster, 
Laird and Rubin 1977). A closed form solution for all 
parameters was put forward by Hamilton (1990), while 
the solutions for θ , the parameters for (4), are derived in 
Diebold, Lee and Weinbach (1994). The specifications using 
t and GED-distributed errors are also estimated using the 
EM algorithm. Unlike the case of the normal distribution, 
no analytic solutions for the regression parameters are 
available. Nevertheless, since the conditions for the closed-
form solution for the transition probabilities, pij,t = Pr (St = 
j|St−1 = i), given in Hamilton (1990) still hold, these can be 
calculated as a by-product of the smoothed probabilities, 
pi,t|T. Thus, obtaining estimates for the remaining 
regression and distributional parameters requires a whole 
numeric optimization in each iteration of the EM algorithm 
relying on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm.

In the case of the t distribution, first (3) is estimated, 
assuming ϵj,t~t(0, σj, ʋj), where ʋj is the (regime-dependent) 
degrees of freedom parameter governing the kurtosis. 
In principle, this parameter can take on any value in 
the region ]2, ∞[. Nevertheless, it is well known that 
the t distribution is empirically indistinguishable from 
the normal one for degrees of freedom greater than 30 
(Hansen 1994; Jondeau and Rockinger 2003). Thus, if 
for state j, the estimate for ʋj takes on a value above 30, 
it again fits the model, this time with one regime being 
governed by a t and the other one by a normal distribution. 
When applying the GED distribution to the errors,  
ϵj,t~GED(0, σj, κj ), a one-step estimation procedure can be 

followed since this distribution reduces to the normal for a 
tail thickness parameter, κj, equal to 1.

To account for autocorrelation, the authors make use of the 
covariance matrix proposed by Newey and West (1987) 
where a lag length equal to 8 is set as suggested by the 
Newey and West (1994) criterion. Since the construction 
of this error matrix and the selection of the appropriate 
lag length rests on several assumptions that might be 
crucial for the results, a robustness check is conducted by 
performing the analysis based on different numbers of 
lags. Since the autocorrelations in St are in general found 
to be relatively large (Chang, Cheng and Khorana 2000), 
all models are re-estimated for 6, 10, 12 and 14 lags.

For some markets, studies report different herding 
dynamics during falling and rising markets (Chang, 
Cheng and Khorana 2000; Bohl, Gebka and Goodfellow 
2009). In addition, evidence from fund managers’ trading 
reveals differences in their herding behaviour between 
buying and selling decisions (Keim and Madhavan 1995; 
Grinblatt, Titman and Wermers 1995). These phenomena 
are also accounted for by estimating an asymmetric version 
of the baseline model:
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for these phenomena by estimating an asymmetric version of our baseline model:

St = γj+γasy
j ∗IRm,t<0+δj |rm,t|+δasyj ∗IRm,t<0 |rm,t|+ζjr

2
m,t+ζasyj ∗IRm,t<0r2m,t+εj,t, (5)

where IRm,t<0 is a dummy variable which is equal to 1 if the market return is negative

 (5)

where IRm,t<0 is a dummy variable that is equal to 1 if the 
market return is negative and equal to 0 otherwise and 
ϵj,t~N (0, σj ).

Finally, the authors want to control for ARCH effects, 
volatility clustering and skewness, which are often present 
in financial time series. In order to do so, (3) is estimated 
in a Markov switching GARCH(1, 1) (MSGARCH[1, 1]) 
framework, thereby, modelling the GARCH component as 
proposed by Gray (1996b). The first lag of St is included, 
to take into account autocorrelation since the Newey and 
West (1987) errors cannot be used for GARCH models. 
To model skewness, a skewed t distribution, is applied 
as proposed by Fernandez and Steel (1998). The density 
function is given as follows:
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ft(εj,t) =
2βj

1 + β2
j

(
t(0, βjεj,t, υj)I

εj,t<0 + t(0,
εj,t
βj

, υj)(1− Iεj,t<0)

)
, (6)

where Iεj,t<0 is an indicator function that is equal to 1 if εj,t is negative and equal to

0 otherwise. βj > 1 indicates a distribution which is skewed to the right while βj is

smaller than 1 in case of a left skewed density. For βj = 1, (6) reduces to a standard t

distribution. The MSGARCH(1, 1) model is estimated using numerical optimization

according to the BFGS algorithm. As we make use of the forward looking algorithm

provided in Gray (1996a) to calculate smoothed probabilities, pi,T = Pr (St|ΓT ), this

approach can also be considered as a robustness check for Kim’s (1994) smoother.4

4.2 Markov Switching ADF Test

Under rational asset pricing (see equation (2)) St should be stationary. To investigate

the stationarity properties of a time series, it is common practice to rely on a unit root

test such as Augmented-Dickey-Fuller (ADF) tests. Typically, these tests ignore possi-

ble regime switching effects often present in financial time series. To take these effects

into account, Hall and Sola (1994) and Hall et al. (1999) propose a Markov switching

ADF test. Allowing for deterministic trending and a regime-depending variance, the

test equation is given as follows:

∆St = ϕjSt−1 +
D∑

d=0

αd,jt
d +

H∑
h=1

ρd,j∆St−h + ηj,t, (7)

where ηj,t∼N(0, π2
j ). j ∈ {1, 2} again denotes the state the process is in at time t, while

D = 0, 1, 2, 3 indicates the degree of the polynomial defining the deterministic trend.

4To control for potential overparameterization, we also estimate a simple MSGARCH(1, 1) with
normally distributed errors and without lagged dependent variables.
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be considered as a robustness check for Kim’s (1994) 
smoother.4

MARKOV SWITCHING ADF TEST

Under rational asset pricing (see equation [2]) St should 
be stationary. To investigate the stationarity properties 
of a time series, it is common practice to rely on a unit 
root test such as ADF tests. Typically, these tests ignore 
possible regime switching effects often present in financial 
time series. To take these effects into account, Hall and 
Sola (1994) and Hall, Psadarakis and Sola (1999) propose 
a Markov switching ADF test. Allowing for deterministic 
trending and a regime-depending variance, the test 
equation is given as follows:
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where ηj,t~N(0, πj
 ). j ϵ {1, 2} again denotes the state the 

process is in at time t, while D = 0, 1, 2, 3 indicates the 
degree of the polynomial defining the deterministic trend.

Obviously, if D = 0, (7) this reduces to a Markov switching 
ADF (MSADF) test with a constant. When D = 1, a regime-
depending linear trend is added while, in case of D = 2, the 
trend can be changing and for D = 3, this trend may have 
a turning point. H indicates the number of lags included. 
Due to strong autocorrelations in St, the maximal lag 
length is set at a relatively high value of 25, and then the 
number of lags is successively reduced until the coefficient 
of the last lag H is found to be statistically significant at the 
10 percent level in at least one state.5 The MSADF test is 
estimated using the EM algorithm.

DATA

The analysis covers the entire US stock market for the 
period 2001–2010. Total returns were obtained for all listed 
stocks and a capitalization weighted market index from the 
Center for Research in Security Prices at the University of 
Chicago. To ensure that the results are not sensitive to the 
selection of the sample period, the baseline model was also 
run for the periods 1999–2010 and 2003–2010. The second 
sample omits the period of the 2001 tech bubble period. 
The analysis is also carried out based on a sample that is 
free of cross-listings, listings in foreign currencies, shares 
from minor exchanges, ETFs and preferred stocks as well 
as stocks that are not marked as major securities. Data are 
taken from Thomson Reuters Datastream. The extent to 
which the results for these data differ relative to the more 

4 To control for potential overparameterization, a simple  
MSGARCH(1, 1) is also estimated with normally distributed errors and 
without lagged dependent variables.

5 As a robustness check, the procedure is also performed for a maximal 
lag length of 15.

comprehensive sample may be informative about the 
contribution of classical blue chips to herding compared 
with more opaque, illiquid and smaller stocks. The 
principal components of the term structure are extracted 
using the Datastream Zero Curve with maturities of 0, 3, 
6 and 9 months as well as 1–10, 12, 15, 20, 25 and 30 years. 
Aggregated trading volume and market capitalization 
for the United States-Datastream Market are employed, 
and the VIX is also obtained from Thomson Reuters 
Datastream.

EMPIRICAL RESULTS
First, the stationarity properties of the time series of 
the cross-sectional absolute deviations given in (1) are 
considered. To this end, the ADF and the MSADF tests 
described above are applied to the series of dispersion, St. 
The Dickey-Fuller test statistics are given in Table 1.

When the standard (single regime) ADF test is considered, 
a unit root can only be rejected by the version of the test that 
does not account for deterministic trending. By contrast, 
the two-state MSADF test rejects the null in both states 
and all specifications for the deterministic trend.6 These 
findings corroborate the use of a time-varying herding 
measure, since the assumption of constant herding is not 
only economically unreasonable but in the present context 
also ignores structural shifts in the time series dynamics 
of St such as when markets move from a low- to a high- 
volatility state.

Table 1: Dickey-Fuller Test Statistics

Single State 2 States

St = 1

D = 0 -2.990** -10.145***

D = 1 -3.051 -15.116***

D = 2 -3.083 -18.047***

D = 3 -3.790 -17.751***

St = 2

D = 0 -3.559***

D = 1 -3.851**

D = 2 -3.988**

D = 3 -4.330**

Notes: Single State refers to a standard ADF test where 2 
States stands for the two regimes version of the test outlined 
in the section on Markov switching herding measures. The 
test statistic provided is the pseudo t-statistic.***, ** and * denote 
statistical significance at the one percent, five percent and  
10 percent level, respectively. Significance is based on asymptotic critical 
values obtained by Monte Carlo simulation.

6 A maximal number of lags, H, equal to 25 are used, but these results 
also hold for H = 15.
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Turning to the baseline model, equation (3) with normal 
errors, the smoothed probabilities, pi,t|T, which are plotted 
in Figure 1 (left-hand side scale), reveal two clearly distinct 
herding states. The smoothed probabilities are plotted 
against the VIX (right-hand side scale). It is immediately 
clear that the high volatility state typically coincides with 
deteriorating investors’ sentiment, that is, a relatively high 
implied volatility. The high-volatility regime can be related 
to periods of large market movements and is characterized 
by a herding parameter, ζ1, that is significantly positive, 
indicating adverse herding. Unlike the case of herding, 
this indicates that investors differentiate more strongly 
between particular stocks than implied by rational asset 
pricing behavior. By contrast, the second regime seems to 
prevail during more tranquil times. Here, ζ2 is found to be 
positive, but statistically insignificant, which is in line with 
CAPM-type models. Parameter estimates are reported in 
Table 2.

Table 2: Estimation Results for Four Herding Models

OLS Markov_norm Markov_t_norm Markov_GED

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

St = 1

γ1 0.017*** (0.000) 0.025*** (0.000) 0.024*** (0.000) 0.023*** (0.000)

δ1 0.549*** (0.043) 0.356*** (0.042) 0.375*** (0.015) 0.378*** (0.014)

ζ1 0.622 (0.746) 1.676** (0.735) 1.494*** (0.205) 1.510*** (0.197)

σ1 4.064 10−5 3.536 10−5 3.548 10−5*** (0.000) 3.347 10−5*** (0.000)

υ1/κ1 4.750*** (0.972) 1.615*** (0.107)

p11 0.991 0.991 0.991

St = 2

γ2 0.015*** (0.000) 0.015*** (0.000) 0.015*** (0.000)

δ2 0.253*** (0.021) 0.253*** (0.012) 0.247*** (0.014)

ζ2 0.873 (0.769) 0.987** (0.440) 1.051** (0.453)

σ2 4.042 10−6 3.884 10−6 (0.038) 3.869 10−6 (0.000)

υ2/κ2 0.842*** (0.090)

p22 0.995 0.994 0.993

Notes: Autocorrelation and heteroskedasticity consistent standard errors as proposed by Newey and West (1987) are provided in brackets. OLS refers to 
the basic ordinary least squares estimates while Markov norm, Markov t norm and Markov GED stand for the Markov switching models with normal, 
t-/normal and generalized error distribution, respectively. ***, **, and * denote statistical significance at the one percent, five percent and 10 percent 
level, respectively.
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Notes: VIX (dotted line) and smoothed probabilities calculated as 
proposed by Kim (1994). The smoothed probabilities are plotted on 
the left-hand side axis while the right-hand side displays the VIX. The 
shaded areas represent NBER recession dates.
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The high-volatility state initially prevails from the 
beginning of our sample in 2001, that is the bursting of 
the tech bubble, the time around 9/11 as well as the start 
of wars in Afghanistan and Iraq. Shortly thereafter, in 
mid-August 2003, a switch into the calmer regime takes 
place. This switch coincides with a strong US economy. 
The second regime then ends in mid-2007 when, around 
August 6, a switch into the high volatility state takes 
place, a couple of days before central banks around the 
world started to intervene in order to stabilize the money 
market at the onset of the financial crisis. Subsequently, 
the process switches several times between both regimes, 
consistent with uncertainty about the existence of a grave 
crisis prevailing among market participants during this 
period. Again, we also see this reflected in the behaviour 
of the VIX. On September 2, 2008, a switch into the high-
volatility state is indicated, a couple of days before 
Lehman Brothers released news about severe losses 
for the first time. In mid-August 2009, the process then 
moves back into the calmer regime and remains there 
until the end of the sample at the end of 2010.7

Applying the procedures described in the section “Markov 
Switching Herding Measures” to allow for fat-tailed 
distributions produces virtually unchanged inferences 
about regimes, the smoothed probabilities and very 
similar parameter estimates compared to the assumption 
of normality. The only substantial difference found is 
that ζj is significantly different from zero in both states. 
Thus, adverse herding is significantly stronger during 
volatile periods, but remains significant in more 
tranquil market phases. The estimates for the model 
allowing for both t and normally distributed regimes 
indicate that, during the high volatility state, the errors 
follow a t distribution while they are well characterized 
by a normal distribution during calm periods.8 Taken 
together, these findings highlight that in the first state 
the dispersion of returns around the market and, thus, 

7 Robustness checks using the sample periods 1999–2010 and 2003–
2010 broadly confirm the findings. The 12-year period actually reveals 
that already in 1999 and 2000, the process is in the high volatility state. 
This supports the interpretation of the first regime as being closely 
related to periods of strong market movements rather than only strong 
downward movements or crises periods. Moreover, the results using 
different lag lengths in calculating the Newey and West (1987) covariance 
matrix broadly confirm the results.

8 The use of the GED reveals that the calm period regime displays 
tails being even thinner than those of a normal distribution. Filtered and 
smoothed probabilities for the non-normal models are available upon 
request.

investor sentiment, is not only relatively volatile but 
also subject to large shocks.

The results for the asymmetric specification given in 
equation (5) suggest that herding in US stocks does not 
differ as much between market upturns and downswings 
since the t values for ζj  are far from being statistically 
significant. This is shown in Table 3. By contrast, the use 
of the MSGARCH model is corroborated by the data since 
strong volatility clustering and ARCH effects are found. In 
addition, the values of υj and βj are found to be significantly 
different from the values implied by a normal distribution. 
The smoothed probabilities for the MSGARCH(1, 1) 
specification with skewed t distribution, given in  
Figure 2, are even more clear-cut than those for the above 
models with constant variances. Again, we find adverse 
herding to be much stronger when the high volatility state 
prevails.9

This paper now turns to the approach with time-varying 
transition probabilities, pjj,t, which are made conditional 
on the VIX, the relative turnover and the principal 
components of the yield curve. The latter is extracted from 
the sample of US zero rates. In what follows, only the first 
two components are of interest for the model since they 
are associated with eigenvalues greater than zero. Further 
interpretations, of course, depend on the loadings of these 
components.10 They were found to be perfectly in line 
with the patterns known in the literature as shift and twist 
(Litterman and Scheinkman 1988; Knez, Litterman and 
Scheinkman 1994). This means that the first component 
has very evenly distributed loadings and stands for a shift 
in the overall interest rate level. By contrast, the second 
one is characterized by loadings, which monotonically 
decrease with a change in the slope of the term structure, 
in particular a rise in short-term interest rates, which is not 
accompanied by a proportional rise in long-term rates or 
vice versa. So, starting from a normal yield curve, a rise 
in this factor comes along with a flattening of the term 
structure.

9 The smoothed probabilities for the MSGARCH(1, 1) with normal 
errors closely resemble those for the homoskedastic models and 
are available upon request, as are the parameter estimates for both 
MSGARCH models and the asymmetric specification. The results for the 
sample that is adjusted for minor stocks, ETFs, etc. are similar in spirit. 
The main difference is that the coefficients ζj are larger in absolute values. 
This suggests that adverse herding is stronger in the stocks of large and 
transparent firms.

10 The components are linear combinations of the underlying zero bond 
rates and the respective parameters are referred to as loadings. There are 
always as many components as there are different zero rates.
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Table 3: Estimation Results for the Asymmetric  
Herding Model

Markov_norm_asy

Coeff. Std. Error

St = 1

γ1 0.024*** (0.001)

γ1 8.643 10−4 (5.953 10−4)

δ1 0.454*** (0.056)

δ1 -0.176*** (0.060)

ζ1 1.248 (0.918)

ζ1 0.553 (0.798)

 σ1 3.411 10−5

p11 0.991

St = 2

γ2 0.015*** (1.626 10−4)

γ2 3.523 10−4** (1.750 10−4)

δ2 0.275*** (0.023)

δ2 -0.057* (0.034)

ζ2 1.316* (0.772)

ζ2 -0.308 (1.175)

 σ2 3.991 10−6

p22 0.995

Notes: Autocorrelation and heteroskedasticity consistent standard 
errors as proposed by Newey and West (1987) are provided in brackets. 
Markov_t_norm_asy refers to the Markov switching models with 
normally distributed errors given in equation (5). ***, **, and * denote 
statistical significance at the one percent, five percent and 10 percent 
level, respectively.

Figure 2: Smoothed Probabilities for the Model 
MSGARCH(1, 1) with Skewed t Distribution and  

Implied Volatility 

25

Figure 2: Smoothed probabilities for the model MSGARCH(1, 1) model with skewed

t distribution and implied volatility
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Notes: VIX (dotted line) and smoothed probabilities calculated as 
proposed by Gray (1996a). The smoothed probabilities are plotted on 
the left-hand side axis while the right-hand side displays the VIX. The 
shaded areas represent NBER recession dates.

Table 4: Parameters of the Time-varying Transition 
Probabilities

St = 1 St = 2

Constant -0.003 10.414

PC1 -1.651 -0.384

PC2 -2.603 0.361

VIX 0.225 -0.179

TURN -124.680 -176.966

Notes: PC1 and PC2 refer to the first and second principle component 
of the yield curve while VIX and TURN stand for the Chicago Board 
Options Exchange Market Volatility Index and the relative volume 
measure defined by turnover in US$ divided by market capitalization 
times 1000.

This paper now turns to the approach with time-varying 
transition probabilities, pjj,t, which are made conditional 
on the VIX, the relative turnover and the principal 
components of the yield curve. The latter is extracted from 
the sample of US zero rates. In what follows, only the first 
two components are of interest for the model since they 
are associated with eigenvalues greater than zero. Further 
interpretations, of course, depend on the loadings of these 
components.11 They were found to be perfectly in line 
with the patterns known in the literature as shift and twist 
(Litterman and Scheinkman 1988; Knez, Litterman and 
Scheinkman 1994). This means that the first component 
has very evenly distributed loadings and stands for a shift 
in the overall interest rate level. By contrast, the second 
one is characterized by loadings, which monotonically 
decrease with a change in the slope of the term structure, 
in particular, a rise in short-term interest rates, which is 
not accompanied by a proportional rise in long-term rates 
or vice versa. So, starting from a normal yield curve, a rise 
in this factor comes along with a flattening of the term 
structure.

Using the principal components and the other two 
covariates for (4), the logit specification for pjj,t, the 
estimates for the parameters in (3) and the variances are 
found to be very close to those for the model with constant 
probabilities and a normal distribution. For this reason, 
Table 4 only reports θj, the parameters estimates for (4), 
the specification governing the transition probabilities.12 
Those parameters estimates, which differ with respect 
to the signs between the states, are of particular interest 
since a change in a given exogenous variable always 
increases the probability for one regime while decreasing 
the one for the other regime, irrespective of the level of 
the covariates (see specification [4]). Put differently, high 
values of such a variable could be linked to one state while 

11 The components are linear combinations of the underlying zero bond 
rates and the respective parameters are referred to as loadings. There are 
always as many components as there are different zero rates.

12 It must be borne in mind that there are no standard errors for the 
parameters of the transition probabilities within the EM framework.
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below-average values would always be consistent with 
the other regime, independent of the behaviour of other 
exogenous variables. While the parameters for the first 
principal component representing the level as well as the 
turnover measure have a negative sign for both states, this 
is not the case for the second component and the VIX. The 
interpretation of the latter is straightforward, namely that 
state 1 is associated with a positive coefficient. Hence, an 
increase in the implied volatility makes it more likely to 
switch into or remain in regime 1 while the reverse holds 
for regime 2.

More interestingly, the coefficient for the second 
principal component, which stands for a flattening 
of the term structure, is negative for the first state 
and positive for the second one. At first glance, this 
is counterintuitive since a flat (or even inverse) term 
structure is, in general, associated with a contracting 
economy. This should presage a switch into the high 
volatility. However, when the model is re-estimated 
employing two quarter lagged principal components, 
the sign turns negative for both states and, in particular, 
more negative for the second, the tranquil state.

CONCLUSIONS
This paper models the time-varying herd behaviour 
reflected in movements in stock market returns. The 
authors argue that extant empirical treatments of herding 
behaviour suffer from several drawbacks. Models that 
assume constant herding dynamics are economically 
implausible since the literature links herding to investor 
sentiment, which by definition, is time varying. Unit root 
tests corroborate this view since one is only able to reject the 
unit root null unambiguously when the process is allowed 
to switch between two distinct regimes. Moreover, existing 
models of time-varying herding require data at monthly or 
lower sampling frequencies and, thus, cannot be used to 
generate evidence about investors’ short-term behaviour.

The procedure proposed by Christie and Huang (1995) 
and Chang, Cheng and Khorana (2000) is relied on to 
examine investors’ herd behaviour. However, their 
approach is adapted by fitting a Markov switching model 
to allow for different dynamics between high and low 
volatility regimes. In addition, the time-varying transition 
probabilities proposed by Diebold, Lee and Weinbach 
(1994) are used to reveal factors explaining changes in herd 
behaviour over time, driven by proxies for macroeconomic 
conditions and investor sentiment.

The authors’ models are estimated for US stock 
market data, thereby controlling for non-normalities, 
autocorrelation and GARCH effects. The findings suggest 
that during times of high volatility in the market, investors 
discriminate more strongly between single stocks than 
during tranquil times and more strongly than implied by 
rational asset pricing models.
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