Chair of Systems Design w

www.sg.ethz.ch

DebtRank: Too Central to Fail?

Stefano Battiston INET-CIGI False Dichotomies 2012, Waterloo November 17, 2012

www.sg.ethz.ch

Acknowledgments

ETH Chair of Systems Design; OTC - Swiss National Fund

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FOC - Forecasting Financial Crisis (FET-OPEN)

www.focproject.net

INET - Systemic Risk Task Force Institute for New Economic Thinking

- A. Kaushik, M. Puliga, M. Tasca, S. Vitali, J. Glattfelder, F. Schweitzer (ETH Zurich), G. Caldarelli (IMT Lucca),
- **5** J. Stiglitz and B. Greenwald (Columbia Univ.)

Outline

Stefano Battiston Chair of Systems Design www.sg.ethz.ch DebtRank: Too-Central-to-Fail -

- Examples of network effects: default cascades and distress
- propagation
- DebtRank: a measure of SIFI
- Exercise on FED 1.2 TD emergency loans from 2008-2009
- Widgets
- Applications: regulation, counterparty risk and operational risk

HCA foc

www.sg.ethz.ch

Balance Sheet Structure

Assets	Liabilities	
Cash	Short Term	
External	Debt	
Assets	Deposits	
Interbank Assets (Money Market)	Long Term Debt	
Interbank Assets (OTC)		
	Equity	

foc forecasting financial crises

www.sg.ethz.ch

Balance Sheet Structure

Assets	Liabilities	Assets	Liabilities
Cash	Short Term	Cash	Short Term
External	Debt	External	Debt
Assets	Deposits	Assets	Deposits
Interbank Assets (Money Market)	Long Term Debt	Interbank Assets (Money Market)	Long Term Debt
Interbank Assets (OTC)		Interbank Assets (OTC)	
	Equity		Equity

- Fundamental identity: Assets = Liabilities + Equity
- Equity < 0 implies default</p>

Han foc

precasting financial crises

www.sg.ethz.ch

Default Cascade

www.sg.ethz.ch

Default Cascade

www.sg.ethz.ch

Default Cascade

www.sg.ethz.ch

Default Cascade

www.sg.ethz.ch

Devaluation Effect

www.sg.ethz.ch

Devaluation Effect

www.sg.ethz.ch

Devaluation Effect

www.sg.ethz.ch

Devaluation Effect

www.sg.ethz.ch

Distress Propagation: DebtRank

INET-CIGI False Dichotomies 2012,

oc

precasting financial crises

www.sg.ethz.ch

Distress Propagation: DebtRank

INET-CIGI False Dichotomies 2012,

precasting financial crises

oc

www.sg.ethz.ch

Distress Propagation: DebtRank

INET-CIGI False Dichotomies 2012,

Waterloo

oc

precasting financial crises

7 / 38

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Stefano Battiston Chair of Systems Design DebtRank: Too-Central-to-Fail - Network Effects

www.sg.ethz.ch

Shock to a Common External Asset

↓ **foc** forecasting financial crises

www.sg.ethz.ch

Shock to a Common External Asset

↓ **foc** forecasting financial crises

www.sg.ethz.ch

Shock to a Common External Asset

↓ **foc** forecasting financial crises

www.sg.ethz.ch

Run of Short Term Lenders

www.sg.ethz.ch

Run of Short Term Lenders

www.sg.ethz.ch

Run of Short Term Lenders

www.sg.ethz.ch

Network Effects: Take-home Message

- Financial networks:
 - 1 Nodes are: Banks, Assets, Funds
 - 2 Links are: any financial contract between two counterparties, but also investments in securities
- Network effects matter: distress can spread in ways that are not easy to anticipate
- Assessing systemic impact requires a network approach and calculations

Interacting Networks and Systemic Risk

foc forecasting financial crises

Interacting Networks and Systemic Risk

foc forecasting financial crises

Interacting Networks and Systemic Risk

foc forecasting financial crises

Interacting Networks and Systemic Risk

Network Effects: Take-home Messages

- For regulators and bankers: measuring the systemic impact of the distress of one or more institutions
 - beyond default-only chains

🕈 foc

Network Effects: Take-home Messages

- For regulators and bankers: measuring the systemic impact of the distress of one or more institutions
 - beyond default-only chains
- For investors: evaluating counterparty risk beyond correlation No network effects:
 - correlation $\rho = 0$: probability of joint defaults is p^N
 - correlation $\rho = 1$: probability of joint defaults is p

Network Effects: Take-home Messages

- For regulators and bankers: measuring the systemic impact of the distress of one or more institutions
 - beyond default-only chains
- For investors: evaluating counterparty risk beyond correlation No network effects:
 - correlation $\rho = 0$: probability of joint defaults is p^N
 - correlation $\rho = 1$: probability of joint defaults is p

With network effects

- probability of joint defaults can be p (and not p^N) even with low correlation
- potential massive underestimation of Value-at-Risk

Network Effects: Take-home Messages

Liaisons can be dangerous

 Risk diversification, but also amplification of distress and importing distress from others [Battiston, ..., Stiglitz, JEDC 2012]

HC foc

Network Effects: Take-home Messages

Liaisons can be dangerous

 Risk diversification, but also amplification of distress and importing distress from others [Battiston, ..., Stiglitz, JEDC 2012]

Does the market take into account network effects?

Network Effects: Take-home Messages

Liaisons can be dangerous

- Risk diversification, but also amplification of distress and importing distress from others [Battiston, ..., Stiglitz, JEDC 2012]
- Does the market take into account network effects?
- "Reducing individual risk always imply reducing systemic risk" : not true

Empirical examples

Zurich Stock Market: ownership network and its backbone¹ foc

INET-CIGI False Dichotomies 2012,

Waterloo

Empirical examples

UK (*left*) and US (NYSE) (*right*) stock market networks².

INET-CIGI False Dichotomies 2012,

Waterloo

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Stefano Battiston Chair of Systems Design www.sg.ethz.ch DebtRank: Too-Central-to-Fail - Interacting Financial Networks

Empirical Examples

China (*left*) and Japan (*right*) stock market networks

INET-CIGI False Dichotomies 2012,

Waterloo

November 17, 2012 19 / 38

The Structure of the Largest Component

A connected component with a **bow-tie** topology

The financial core of the TNC network

Ownership network around TNC worldwide Left: The core (1300 nodes). (Right) An example of few top financial institutions involved in many cycles. [Vitali ea., PLoS-ONE 2011]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DebtRank

Stefano Battiston Chair of Systems Design www DebtRank: Too-Central-to-Fail - DebtRank

www.sg.ethz.ch

Stefano Battiston Chair of Systems Design ww DebtRank: Too-Central-to-Fail - DebtRank

www.sg.ethz.ch

DebRank is a novel indicator to identify SIFI

www.sg.ethz.ch

DebtRank

DebRank is a novel indicator to identify

- SIFI (Systemically Important Financial Institutions)
- groups of SIFI

HCA foc precasting financial crises

www.sg.ethz.ch

DebtRank

- DebRank is a novel indicator to identify
 - SIFI (Systemically Important Financial Institutions)
 - groups of SIFI
- Propagation of distress from an institution to another is a key issue for the stability of financial systems.

Han foc

www.sg.ethz.ch

DebtRank

- DebRank is a novel indicator to identify
 - SIFI (Systemically Important Financial Institutions)
 - groups of SIFI
- Propagation of distress from an institution to another is a key issue for the stability of financial systems.
- Propagation channels
 - direct: balance sheet interlock (unipartite graph)
 - indirect: common asset (bipartite graph)

www.sg.ethz.ch

DebtRank

- DebRank is a novel indicator to identify
 - SIFI (Systemically Important Financial Institutions)
 - groups of SIFI
- Propagation of distress from an institution to another is a key issue for the stability of financial systems.
- Propagation channels
 - direct: balance sheet interlock (unipartite graph)
 - indirect: common asset (bipartite graph)
- DebtRank overcomes some limitations in
 - standard stress-test techniques at central banks
 - standard complex network mesures (e.g. betweenness, centrality etc.)

Stefano Battiston Chair of Systems Design ww DebtRank: Too-Central-to-Fail - DebtRank

www.sg.ethz.ch

more central = more systemically important

Stefano Battiston Chair of Systems Design wv DebtRank: Too-Central-to-Fail - DebtRank

www.sg.ethz.ch

- more central = more systemically important
- not just a ranking

Stefano Battiston Chair of Systems Design www DebtRank: Too-Central-to-Fail - DebtRank

www.sg.ethz.ch

- more central = more systemically important
- not just a ranking
- systemic economic loss (e.g., euros) due to distress on one or more nodes
- extension/adaptation to social/biological contagion?

[Battiston, Puliga, Kaushik, Tasca, Caldarelli, DebtRank: Too-central-to-fail? (2012) Sci Rep. 2:541]

www.sg.ethz.ch

Impact Matrix and Debtrank definition

- exposure of *i* to *j*, *A_{ij}* (e.g. lending, bond, stock shares).
 core capital of *i*, *E_i*.
- **1** Relative exposure of *i* to *j*, w.r.t. total exposure, $\frac{A_{ij}}{\sum_j A_{ij}}$, is generally small (sum up to 1)
- 2 Relative exposure of *i* to *j*, w.r.t. core capital: $Z_{ij} = \frac{A_{ij}}{E_i}$, (sum can easily exceed 1)
- Direct Impact of i on j defined as the exposure that j has towards
 i: W_{ij} = Z_{ji}, W = Z^T
- DebtRank: A node *i* is more central if it impacts strongly (large W_{ij}) many other central nodes: recursive!
- Each node propagate its distress only once (we tame reverberations)
- all formulas at doi:10.1038/srep00541
- widgets and infographics at:

http://ethz.focproject.net:8080/widget

INET-CIGI False Dichotomies 2012,

Waterloo

24 / 38

November 17, 2012

www.sg.ethz.ch

Inspired by Network Centrality

 Adapting notion of Feedback Centrality to financial distress: a node is more important if it impacts on many high value and important nodes

$$c_i = \sum_j W_{ij} v_j + \sum_j W_{ij} c_j$$

$$c = (I - W)^{-1} W v$$

where v = e.g. total asset

- Issues: need \u03c0(W) < 1, but imposing row-stochasticity we could not compare values across time
- Strategy: keep impact matrix as is and tame cycles by excluding walks already visited
- Result: we obtain not just a ranking but an estimate of fraction of total economic value in distress

www.sg.ethz.ch

Applications: SIFI

- In several countries, Central Banks maintain a database of:
 - Balance sheet interlocking exposures between banks
 - Exposures to external assets
 - Core capital
- Build the impact matrix under various scenarios possibly taking into account market values
- Run DebtRank and GroupDebtRank to assess systemic impact of one or more institutions

Applications: Counterparty Risk

- Investors usually do not know the mutual exposures among counterparties. However,
- One can generate an ensemble of viable networks of exposures using available information
- Run DebtRank and GroupDebtRank on each network of the ensemble
- Obtain distribution of losses across counterparties, conditional to a given shock

Foc Sec

Application: an exercise on FED data + BvD data

- Take banks' investment in each others equity share as a proxy of all exposures
- Focus on the largest borrowers from the FED in 2008-2010
 - 22 inst., peak lending 1.2 USD trillions, total assets 20 USD trillions)
- Incorporate dynamics of core capital (take market capitalization as a proxy of core capital)

Recipe

- 1 market capitalization as proxy of core capital
- 2 investments in equity as proxy of financial exposures
- **3** rescaling factor α , conservative scenario: in good the times every bank can sustain the default of at least 5 counterparties

www.sg.ethz.ch

Application: an exercise on FED data + BvD data

foc forecasting financial crises

www.sg.ethz.ch

Application: an exercise on FED data + BvD data

www.sg.ethz.ch

Debt Rank vs other Measures

www.sg.ethz.ch

Debt Rank vs other Measures

www.sg.ethz.ch

Debt Rank vs other Measures

www.sg.ethz.ch

Debt Rank vs other Measures

www.sg.ethz.ch

Group DebtRank

Recipe

- **1** A selected group of institutions is hit by a shock: for each a certain fraction $\phi_i < 1$ of equity vanishes
- Propagate distress according to impact matrix as before (closed walks traversed only once)
- 3 Test various values of ϕ and impact scaling factor α

Man foc

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Stefano Battiston Chair of Systems Design DebtRank: Too-Central-to-Fail - DebtRank www.sg.ethz.ch

GroupDebtRank

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Stefano Battiston Chair of Systems Design DebtRank: Too-Central-to-Fail - DebtRank www.sg.ethz.ch

GroupDebtRank

www.sg.ethz.ch

Conclusions

- Network effects matters for distress propagation: SIFI and counterparty risk
- DebtRank is a centrality-inspired algorithm to assess SIFI in network context, overcoming some limitations of state-of-the-art stress-testing
- From Too-Big-to-Fail to Too-Central-to-Fail
- Currently: a new method to evaluating VAR and ES in a network context

www.sg.ethz.ch

Financial Networks: a research agenda

- 1 Empirics: network structure
- 2 Link formation: evolution to stable/efficient structures
- **3** Node dynamics: propagation (e.g., information, distress)

Han foc

Financial Networks: a research agenda

- 1 Empirics: network structure
- 2 Link formation: evolution to stable/efficient structures
- **3** Node dynamics: propagation (e.g., information, distress)

Meta-level

I Feedback from structure onto incentives: political economy aspect

🕈 foc

Financial Networks: a research agenda

Financial networks

- Topology, Link formation, Node dynamics: e.g., FOC, various INET grants
- Interacting networks: MULTIPLEX
- Feedback from structure onto incentives: INET Nets sub-TaskForce

🔊 foc

www.sg.ethz.ch

The FOC Project

- Forecasting Financial Crises (FOC)
- European project funded by FET-OPEN
- 13 partners (including ECB), coordinated by Guido Caldarelli at IMT Lucca
- Information: www.focproject.net widgets: http://ethz.focproject.net:8080/

Related events

- FOC-CRISIS School on Complex Financial Networks, IMT Lucca, October 24-27 2012
- INET Conference False Dichotomies, Waterloo, November 15-17
 2012
 4.4 foc
- NetSci 2013

www.sg.ethz.ch

Debt Rank Dynamics

Centrality computation plus contraints on walks is equivalent to following algorithm.

- continuous variable $h_i \in [0, 1]$.
- 3 possible states, undistressed, distressed, inactive: $s_i \in \{U, D, I\}$.
- S_f : set of nodes in distress at time 1. $h_i(1) = \psi \forall i \in S_f$; $h_i(1) = 0 \forall i \notin S_f$, and $s_i(1) = D, \forall i \in S_f$; $s_i(1) = U \forall i \notin S_f$.

$$egin{aligned} h_i(t) &= \min\left\{1, h_i(t-1) + \sum_j W_{ji} h_j(t-1)
ight\}, ext{ where } j \mid s_j(t-1) = D \ s_i(t) &= \left\{egin{aligned} D & ext{if } h_i(t) > 0 & s_i(t-1)
otimes & s_i(t-1)
otimes & times & ti$$

Stefano Battiston Chair of Systems Design DebtRank: Too-Central-to-Fail - DebtRank

www.sg.ethz.ch

INET-CIGI False Dichotomies 2012,

Waterloo

November 17, 2012 38 / 38